Keyboard History
An article describing the history of the keyboard; how, why and when keyboards where invented and the different types and sizes.
A musical keyboard is the set of adjacent depressible levers on a musical instrument which cause the instrument to produce sounds.
Keyboards almost all share the common layout shown. Musical instruments with keyboards of this type include the piano, harpsichord, clavichord, organ, electric piano, electronic piano, digital piano, synthesizer, "arranger keyboard" or "home keyboard" (also called "electronic keyboard"), celesta, dulcitone, accordion, melodica, glasschord, and carillon. Since the most commonly encountered keyboard instrument is the piano, the keyboard layout is often called the piano keyboard. In spite of this, keyboard instruments of different types are often played using different techniques. In particular, the arranger keyboard uses pre-set drum rhythms which respond to chords played in the left hand by the instrumentalist, with other buttons and switches used to change rhythms and even the voice of the instrument.
The twelve notes of the Western musical scale are laid out with the lowest note on the left; the larger keys (for the seven "natural" notes of the C major scale: C, D, E, F, G, A, B) jut forward. Technically these keys are called Naturals. Because these keys are often coloured white on a keyboard, these are often called the white notes or white keys. The keys for the remaining five notes which are not part of the C major scale (namely C/D, D/E, F/G, G/A, A/B) are set back. The correct term for these keys is Accidentals or more often Sharps. Because these keys are often coloured black, these notes are often called the black notes or black keys. The pattern repeats at the interval of an octave.
The arrangement of longer keys for C major with intervening, shorter keys for the intermediate semitones dates to the 15th century. Many keyboard instruments dating from before the nineteenth century have a keyboard with the colours of the keys reversed - darker coloured keys for the white notes and white keys for the black notes. A few electric and electronic instruments have had this feature; Vox's electronic organs of the 1960s, Hohner's Clavinet L, one version of Korg's Poly-800 synthesizer and Roland's digital harpsichords.Some 1960s electronic organs used reverse colors or gray sharps or naturals to indicate the lower part(s) of a split keyboard. Farfisa's FAST series of portable organs had black, light gray and dark gray naturals and white sharps.
A Roland EXR-3 Arranger Keyboard
The chromatic compass of keyboard instruments has tended to increase. Harpsichords often extended over five octaves in the 18th century, while most pianos manufactured since about 1870 have 88 keys. Some modern pianos have even more notes (a Bösendorfer 225 has 92 and a Bösendorfer 290 "Imperial" has 97 keys). Modern synthesizer keyboards commonly have either 61, 76 or 88 keys. Organs normally have 61 keys per manual, though some spinet models have 44 or 49. An organ pedalboard, a keyboard played by the organist's feet, may vary in size from 12 to 32 notes.
Piano keyboard which shows the alignment of the white and the black keys.
In a well-designed keyboard, the natural keys are of uniform width at the front, and all keys are uniformly distributed. If the width of an octave is taken to be 12 units, then the white key width is 12/7 units, and the centre of each of the twelve keys must be separated by 1 unit.
There have been variations in the design of the keyboard to address technical and musical issues. For instance, during the sixteenth century, when instruments were often tuned in meantone temperament, some harpsichords were constructed with the G and E keys split into two. One portion of the G key operated a string tuned to G and the other operated a string tuned to A, similarly one portion of the E key operated a string tuned to E, the other portion operating a string tuned to D. This extended the flexibility of the harpsichord, enabling composers to write keyboard music calling for harmonies containing the so-called wolf fifth E to G, but without producing discomfort in the listeners. Other examples of variations in keyboard design include the Janko keyboard and the chromatic keyboard systems on the accordion and bandoneón.
Other instruments share the keyboard layout, although they are not keyboard instruments. For example the xylophone, marimba, vibraphone and glockenspiel all have a separate sounding tone bar for each note, and these bars are laid out in the same configuration as a common keyboard.

Piano History
Find out who invented the acoustic piano and when. This article also takes you through the development of the acoustic piano to the modern piano of today. You can also find out what materials are used in the making of upright and grand pianos and what the names of all the parts are called.
History of the Acoustic Piano
A piano is a large musical instrument with a keyboard. Its sound is produced by strings stretched on a rigid frame. These vibrate when struck by felt-covered hammers, which are activated by the keyboard.
The word piano is derived from the original Italian name for the instrument, gravicembalo col piano e forte. Literally harpsichord with soft and loud, this refers to the ability of the piano to produce notes at different volumes depending on how hard its keys are pressed.
As a keyboard stringed instrument, the piano is similar to the clavichord and harpsichord. The three instruments differ in the mechanism of sound production. In a harpsichord, strings are plucked by quills or similar material. In the clavichord, strings are struck by tangents which remain in contact with the string. In a piano, the strings are struck by hammers which immediately rebound, leaving the string to vibrate freely.
Early history
The piano was invented by Bartolomeo Cristofori in Florence, Italy. When he built his first piano is not entirely clear, but an inventory made by Cristofori's employers, the Medici family, indicates the existence of an early Cristofori instrument by the year 1700. Cristofori built only about twenty pianos before he died in 1731; the three that survive today date from the 1720s.
Like many other inventions, the piano was founded on earlier technological innovations. In particular, it benefited from centuries of work on the harpsichord, which had shown the most effective ways to construct the case, the soundboard, the bridge, and the keyboard. Cristofori was himself a harpsichord maker and well acquainted with this body of knowledge.
Cristofori's great success was to solve, without any prior example, the fundamental mechanical problem of piano design: the hammers must strike the string but not continue to touch it once they have struck (which would damp the sound). Moreover, the hammers must return to their rest position without bouncing violently, and it must be possible to repeat a note rapidly. Cristofori's piano action served as a model for the many different approaches to piano actions that were to follow.
Cristofori's early instruments were made with thin strings and were much quieter than the modern piano. However, in comparison with the clavichord (the only previous keyboard instrument capable of dynamic nuance) they were considerably louder, with greater sustain.
Cristofori's new instrument remained relatively unknown until an Italian writer, Scipione Maffei, wrote an enthusiastic article about it (1711), including a diagram of the mechanism. This article was widely distributed, and most of the next generation of piano builders started their work as a result of reading it.
One of these builders was Gottfried Silbermann, better known as an organ builder. Silbermann's pianos were virtually direct copies of Cristofori's, but with an important exception: Silbermann invented the forerunner of the modern damper pedal (also known as the sustaining pedal or loud pedal), which permits the dampers to be lifted from all the strings at once. Virtually all subsequent pianos incorporated some version of Silbermann's idea.
Silbermann showed Bach one of his early instruments in the 1730s. Bach did not like it at that time, claiming that the higher notes were too soft to allow a full dynamic range. Though this earned him some animosity from Silbermann, the latter did apparently heed the criticism. Bach did approve of a later instrument he saw in 1747, and apparently even served as an agent to help sell Silbermann's pianos.
Piano-making flourished during the late 18th century in the work of the Viennese school, which including Johann Andreas Stein (who worked in Augsburg, Germany) and the Viennese makers Nannette Stein (daughter of Johann Andreas) and Anton Walter. The Viennese-style pianos were built with wooden frames, two strings per note, and leather-covered hammers. It was for such instruments that Mozart composed his concertos and sonatas, and replicas of them are built today for use in authentic-instrument performance. The piano of Mozart's day had a softer, clearer tone than today's pianos, with less sustaining power.
The term fortepiano is nowadays often used to distinguish the 18th-century style of instrument from later pianos. For further information on the earlier part of piano history, see fortepiano.
The development of the modern piano
In the lengthy period lasting from about 1790 to 1890, the Mozart-era piano underwent tremendous changes which ultimately led to the modern form of the instrument. This evolution was in response to a consistent preference by composers and pianists for a more powerful, sustained piano sound. It was also a response to the ongoing Industrial Revolution, which made available technological resources like high-quality steel for strings (see piano wire) and precision casting for the production of iron frames.
Over time, piano playing became a more strenuous and muscle-taxing activity, as the force needed to depress the keys, as well as the length of key travel, was increased. The tonal range of the piano was also increased, from the five octaves of Mozart's day to the 7 1/3 (or even more) octaves found on modern pianos.
In the first part of this era, technological progress owed much to the English firm of Broadwood, which already had a strong reputation for the splendour and powerful tone of its harpsichords. Over time, the Broadwood instruments grew progressively larger, louder, and more robustly constructed. The Broadwood firm, which sent pianos to both Haydn and Beethoven, was the first to build pianos with range of more than five octaves: five octaves and a fifth during the 1790s, six by 1810 (in time for Beethoven to use the extra notes in his later works), and seven by 1820. The Viennese makers followed these trends. The two schools, however, used different piano actions: the Broadwood one more robust, the Viennese more sensitive.
By the 1820s, the centre of innovation had shifted to the Érard firm of Paris, which built pianos used by Chopin and Liszt. In 1821, Sébastien Érard invented the double escapement action, which permitted a note to be repeated even if the key had not yet risen to its maximum vertical position, a great benefit for rapid playing. As revised by Henri Herz about 1840, the double escapement action ultimately became the standard action for grand pianos, used by all manufacturers.
Some other important technical innovations of this era include the following:
  • use of three strings rather than two for all but the lower notes
  • the iron frame. The iron frame, also called the "plate", sits atop the soundboard, and serves as the primary bulwark against the force of string tension. The iron frame was the ultimate solution to the problem of structural integrity as the strings were gradually made thicker, tenser, and more numerous (in a modern grand the total string tension can approach 20 tons). The iron frame was invented in 1825 in Boston by Alpheus Babcock, culminating an earlier trend to use ever more iron parts to reinforce the piano. Babcock later worked for the Chickering firm, where the first iron frame in grand pianos (1840) was developed.
  • felt hammers. The harder, tauter steel strings required a softer hammer type to maintain good tone quality. Hammers covered with compressed felt were introduced by the Parisian maker Jean-Henri Pape in 1826, and are now universally used.
  • the sostenuto pedal (see below), invented in 1844 by Jean Louis Boisselot and improved by the Steinway firm in 1874.
  • the overstrung scale, also called "cross-stringing". This is a special arrangement of strings within the case: the strings are placed in a vertically overlapping slanted arrangement, with two bridges on the soundboard instead of just one. The purpose of the overstrung scale was to permit longer strings to fit within the case of the piano. Overstringing was invented by Jean-Henri Pape during the 1820s, and first applied to the grand by Henry Steinway Jr. in 1859.
  • duplex scaling, invented by Theodore Steinway in 1872, permits the parts of the string near its ends, which otherwise would be damped with cloth, to vibrate freely, thus increasing resonance and adding to the richness of the sound. Aliquot stringing, which serves a similar purpose in Blüthner pianos, was invented by Julius Blüthner in 1873.
The modern concert grand achieved essentially its present form around the beginning of the 20th century, and progress since then has been only incremental. For some recent developments, see Innovations in the piano.
Some early pianos had shapes and designs that are no longer in use. The once-popular square piano had the strings and frame on a horizontal plane, but running across the length of the keyboard rather than away from it. It was similar to the upright piano in its mechanism. Square pianos were produced through the early 20th century; the tone they produced is widely considered to be inferior. Most had a wood frame, though later designs incorporated increasing amounts of iron. The giraffe piano, by contrast, was mechanically like a grand piano, but the strings ran vertically up from the keyboard rather than horizontally away from it, making it a very tall instrument. These were uncommon.
Piano history and musical performance
The huge changes in the evolution of the piano have somewhat vexing consequences for musical performance. The problem is that much of the most widely admired music for piano—for example, that of Haydn, Mozart, and Beethoven was composed for a type of instrument that is rather different from the modern instruments on which this music is normally performed today. Even the music of the early Romantics, such as Chopin and Schumann, was written for pianos substantially different from ours.
One view that is sometimes taken is that these composers were dissatisfied with their pianos, and in fact were writing visionary "music of the future" with a more robust sound in mind. This view is perhaps more plausible in the case of Beethoven, who composed at the beginning of the era of piano growth, than it is in the case of Haydn or Mozart.
Others have noted that the music itself often seems to require the resources of the early piano. For example, Beethoven sometimes wrote long passages in which he directs the player to keep the damper pedal down throughout (a famous example occurs in the last movement of the "Waldstein" sonata, Op. 53). These come out rather blurred on a modern piano if played as written but work well on (restored or replicated) pianos of Beethoven's day. Similarly, the classical composers sometimes would write passages in which a lower violin line accompanies a higher piano line in parallel; this was a reasonable thing to do at a time when piano tone was more penetrating than violin tone; today it is the reverse.
Current performance practice is a mix. A few pianists simply ignore the problem; others modify their playing style to help compensate for the difference in instruments, for example by using less pedal. Finally, participants in the authentic performance movement have constructed new copies of the old instruments and used them in performance; this has provided important new insights and interpretations of the music.
The modern piano
Types of piano
Modern pianos come in two basic configurations and several sizes: the grand piano and the upright piano.
Grand pianos have the frame and strings placed horizontally, with the strings extending away from the keyboard. This avoids the problems inherent in an upright piano, but takes up a large amount of space and needs a spacious room with high ceilings for proper resonance. Several sizes of grand piano exist. Manufacturers and models vary, but as a rough guide we can distinguish the "concert grand", approximately. 3 m; the "grand", approximately. 1.8 m; and the smaller "baby grand", which may be a bit shorter than it is wide. All else being equal, longer pianos have better sound and lower inharmonicity of the strings (so that the strings can be tuned closer to equal temperament in relation to the standard pitch with less stretching), so that full-size grands are almost always used for public concerts, whereas baby grands are only for domestic use where space and cost are crucial considerations.
Upright pianos, also called vertical pianos, are more compact because the frame and strings are placed vertically, extending in both directions from the keyboard and hammers. It is considered harder to produce a sensitive piano action when the hammers move sideways, rather than upward against gravity; however, the very best upright pianos now approach the level of grand pianos of the same size in tone quality and responsiveness. For recent advances, see Innovations in the piano.
In 1863, Henri Fourneaux invented the player piano, a kind of piano which "plays itself" from a piano roll without the need for a pianist. Also in the 19th century, toy pianos began to be manufactured.
A relatively recent development is the prepared piano, which is a piano adapted in some way by placing objects inside the instrument, or changing its mechanism in some way.
Since the 1980s, digital pianos have been available, which use digital sampling technology to reproduce the sound of each piano note. Digital pianos have become quite sophisticated, with standard pedals, weighted keys, multiple voices, MIDI interfaces, and so on in the better models. However, with current technology, it remains difficult to duplicate a crucial aspect of acoustic pianos, namely that when the damper pedal (see below) is depressed, the strings not struck vibrate sympathetically with the struck strings. Since this sympathetic vibration is considered central to a beautiful piano tone, digital pianos are still not considered by most experts as competing with the best acoustic pianos in tone quality. Progress is now being made in this area by including physical models of sympathetic vibration in the synthesis software.
Keyboard
Almost every modern piano has 88 keys (seven octaves and a bit, from A0 to C8). Many older pianos only have 85 (from A0 to A7), while some manufacturers extend the range further in one or both directions. The most notable example of an extended range can be found on Bösendorfer pianos, some of which extend the normal range downwards to F0, with others going as far as a bottom C0, making a full eight octave range. On some models these extra keys are hidden under a small hinged lid, which can be flipped down to cover the keys and avoid visual disorientation in a pianist unfamiliar with the extended keyboard; on others, the colours of the extra keys are reversed (black instead of white and vice versa) for the same reason. The extra keys are added primarily for increased resonance; that is, they vibrate sympathetically with other strings whenever the damper pedal is depressed and thus give a fuller tone. Only a very small number of works composed for piano actually use these notes. More recently, the Stuart and Sons company has also manufactured extended-range pianos. On their instruments, the range is extended up the treble for a full eight octaves. The extra keys are the same as the other keys in appearance.
For the arrangement of the keys on a piano keyboard, see Musical keyboard. This arrangement was inherited from the harpsichord without change, with the trivial exception of the colour scheme (white for naturals and black for sharps) which became standard for pianos in the late 18th century.
Pedals
Pianos have had pedals, or some close equivalent, since the earliest days. (In the 18th century, some pianos used levers pressed upward by the player's knee instead of pedals.) The three pedals that have become more or less standard on the modern piano are the following.
The damper pedal (also called the sustaining pedal or loud pedal) is often simply called "the pedal," since it is the most frequently used. It is placed as the rightmost pedal in the group. Every note on the piano, except the top two octaves, is equipped with a damper, which is a padded device that prevents the strings from vibrating. The damper is raised off the strings of its note whenever the key for that note is pressed. When the damper pedal is pressed, all the dampers on the piano are lifted at once, so that every string can vibrate. This serves two purposes. First, it permits notes to be connected (i.e., played legato) when there is no fingering that would make this possible. More important, raising the damper pedal causes all the strings to vibrate sympathetically with whatever notes are being played, which greatly enriches the tone.
Piano music starting with Chopin tends to be heavily pedalled, as a means of achieving a singing tone. In contrast, the damper pedal was used only sparingly by the composers of the 18th century, including Haydn, Mozart and Beethoven; in that era, pedalling was considered primarily as a special coloristic effect.
The soft pedal or "una corda" pedal is placed leftmost in the row of pedals. On a grand piano, this pedal shifts the action to one side slightly, so that hammers that normally strike all three of the strings for a note strike only two of them. This softens the note and also modifies its tone quality. For notation of the soft pedal in printed music, see Italian musical terms.
The soft pedal was invented by Cristofori and thus appeared on the very earliest pianos. In the 18th and early 19th centuries, the soft pedal was more effective than today, since it was possible at that time to use it to strike three, two or even just one string per note—this is the origin of the name "una corda", Italian for "one string". In modern pianos, the strings are spaced too closely to permit a true "una corda" effect—if shifted far enough to strike just one string on one note, the hammers would also strike the string of the next note over.
On upright pianos, the soft pedal is replaced by a mechanism for moving the hammers' resting position closer to the strings. This reduces volume, but does not change tone quality as a true "una corda" pedal does.
Digital pianos often use this pedal to alter the sound of other instruments like organs, guitars, and harmonicas. Pitch bends, leslie speaker on/off, vibrato modulation, etc. increase the already-great versatility of such instruments.
The sostenuto pedal or "middle pedal" maintains in the raised position any damper that was raised at the moment the pedal was depressed. It makes it possible to sustain some notes (depress the sostenuto pedal before releasing the notes to be sustained) while the player's hands have moved on to play other notes, which can be useful for musical passages with pedal points and other tricky situations. The sostenuto pedal was the last of the three pedals to be added to the standard piano, and to this day many cheap pianos—and even a few good ones— do not have a sostenuto pedal. (Almost all modern grand pianos have a sostenuto; most upright pianos do not.) A number of twentieth-century works call for the use of this pedal.
Over the years, the middle pedal has served many different functions. Some upright pianos have a practice pedal in place of the sostenuto. This pedal, which can usually be locked in place by depressing it and pushing it to one side, drops a strip of felt between the hammers and the keys so that all the notes are greatly muted— a handy feature for those who wish to practice at odd hours without disturbing others in the house. The practice pedal is rarely used in performance. Other uprights have a bass sustain as a middle pedal. It works the same as the damper pedal except it only lifts the dampers for the low end notes.
Irving Berlin's famed Transposing Piano used the middle pedal as a clutch to shift the keyboard with a lever. The entire action of the piano would shift to allow the operator to play in any key.
The materials of the piano
Many parts of a piano are made of materials selected for extreme sturdiness. In quality pianos, the outer rim of the piano is made of a hardwood, normally maple or beech. According to Harold A. Conklin, the purpose of a sturdy rim is so that "the vibrational energy will stay as much as possible in the soundboard instead of dissipating uselessly in the case parts, which are inefficient radiators of sound." The rim is normally made by laminating flexible strips of hardwood to the desired shape, a system that was developed by Theodore Steinway in 1880.
The thick wooden braces at the bottom (grands) or back (uprights) of the piano are not as acoustically important as the rim, and are often made of a softwood, even in top-quality pianos, in order to save weight.
The pinblock, which holds the tuning pins in place, is another area of the piano where toughness is important. It is made of hardwood, and generally is laminated (built of multiple layers) for additional strength and gripping power.
Piano strings (also called piano wire), which must endure years of extreme tension and hard blows, are made of high quality steel. They are manufactured to vary as little as possible in diameter, since all deviations from uniformity introduce tonal distortion. The bass strings of a piano are made of a steel core wrapped with copper wire, to increase their flexibility. For the acoustic reasons behind this, see Piano acoustics.
The plate, or metal frame, of a piano is usually made of cast iron. It is advantageous for the plate to be quite massive. Since the strings are attached to the plate at one end, any vibrations transmitted to the plate will result in loss of energy to the desired (efficient) channel of sound transmission, namely the bridge and the soundboard. Some manufacturers now use cast steel in their plates, for greater strength. The casting of the plate is a delicate art, since the dimensions are crucial and the iron shrinks by about one percent during cooling. The inclusion in a piano of an extremely large piece of metal is potentially an aesthetic handicap. Piano makers overcome this handicap by polishing, painting, and decorating the plate; often plates include the manufacturer's ornamental medallion and can be strikingly attractive.
The numerous grand parts and upright parts of a piano action are generally hardwood (e.g. maple, beech. hornbeam). World War II brought about plastics which were originally incorporated into some pianos in the 1940s and 1950s, but were clearly disastrous, crystallizing and losing their strength after only a few decades of use. The Steinway firm once incorporated Teflon, a synthetic material developed by DuPont, for some grand action parts in place of cloth, but ultimately abandoned the experiment due to an inherent "clicking" which invariably developed over time. More recently, the Kawai firm has built pianos with action parts made of more modern and effective plastics such as nylon; these parts have held up better and have generally received the respect of piano technicians.
The part of the piano where materials probably matter more than anywhere else is the soundboard. In quality pianos this is made of solid spruce (that is, spruce boards glued together at their edges). Spruce is chosen for its high ratio of strength to weight. The best piano makers use close-grained, quarter-sawn, defect-free spruce, and make sure that it has been carefully dried over a long period of time before making it into soundboards. In cheap pianos, the soundboard is often laminated; i.e. made of plywood.
Piano keys are generally made of spruce or basswood, for lightness. Spruce is normally used in high-quality pianos. Traditionally, the sharps (black keys) were made from ebony and the flats (white keys) were covered with strips of ivory, but since ivory-yielding species are now endangered and protected by treaty, plastics are now almost exclusively used. Legal ivory can still be obtained in limited quantities. At one time the Yamaha firm innovated a plastic called "Ivorine" or "Ivorite", since imitated by other makers, that mimics the feel and/or look of ivory on the player's fingers.
The requirement of structural strength, fulfilled with stout hardwood and thick metal, makes pianos heavy. Even a small upright can weigh 136 kg (300 lb), and the Steinway concert grand (Model D) weighs 480 kg (990 lb). The largest piano built, the Fazioli F308, weighs 691 kg (1520 lb).
Care and maintenance of pianos
Pianos are regularly tuned to keep them up to pitch and produce a pleasing sound; they are, ideally, tuned to the internationally recognised standard concert pitch of A = 440 Hz. The hammers of pianos are voiced to compensate for gradual hardening. Top-quality but aged pianos can be restored, replacing a great number of their parts to produce an instrument closely similar to a new one.
The role of the piano
The piano is a crucial instrument in Western classical music, jazz, film, television and electronic game music, and most other complex musical genres. A large number of composers are pianists, and they frequently use the piano as a tool for composition.
Pianos were and are extremely popular instruments for private household ownership, especially among the middle- and upper-class. As such, pianos have gained a place in the popular consciousness, and are sometimes referred to by nicknames, including: "the eighty-eight," "the ivories," and "the black(s) and white(s)."

 
History of the Keyboard

A Brief History of the Modern Keyboard
The piano is actually an instrument made up of compromises due to the fact that it is not capable of playing the full "chromatic" scale as it can be played on say, a violin. The piano utilizes a tuning format called "just intonation", a system whereby we are able to command the expression of all the sounds that are requred to be heard within the compass of an octave in order that the degrees of each and every possible scale may be correctly and exactly rendered. In order to create "true diatonic" sounds required for the necessary intervals in all scales, there would have to be 66 notes to an octave!
KEYBOARDS:
Vitruvius, in his work on architecture (1st century A.D.) , describes an organ with balanced keys. Next we learn that Emperor Constantine sent a musical instrument having keys to King Pepin of France in 757 A.D.
The great musical genius, Guido of Arezzo, applied the keyboard to stringed instruments in the first part of the 11th century. Guido's diatonic scale, eight full tones with seven intervals of which two were semitones, was used in the first claivchords, which had 20 keys. There are no reliable records in existence, as to who applied the chromatic scale first. Giuseppe Zarlino added the semitones to his instrumnets about 1548, but insturments of earlier date have the chromatic scale, as for instance the clavicymbala, some of which had 77 keys to a compass of four octaves.
After the 15th century nearly all the makers of key-stringed instruments used the chromatic scale practically as we find it in the modern piano. The semitones in most of those old instrments are elevated and of a different color than the full tones. Since the develoment of the piano many experiments have been made with so-called "chromatic" keyboards, in which the semitones were on a level with the full tones. A Dr. Krause of Eisenberg constructed a keyboard in 1811, in which the semitones were not raised and all keys were of the same color. About 1789, Neuhaus, a piano maker of Vienna, constructed a concave-formed keyboard forhis pianos. He aimed to follow the inclination of the human arm to move in a semicircle.
As you can see, the modern keyboard has gone through many changes, however, the basic concept of the key lay-out has been fairly consistent. This is a result of the order in which the whole tones and semi-tones are arranged, and has evolved over centuries.


0 komentar:

Posting Komentar

Twitter Delicious Facebook Digg Stumbleupon Favorites More

 
Design by Free WordPress Themes | Bloggerized by Lasantha - Premium Blogger Themes | Enterprise Project Management